

Jagadish Ghimire<sup>1</sup>, Mehdi Mani<sup>2</sup>, Noel Crespi<sup>2</sup>, Teerapat Sanguankotchakorn<sup>3</sup>

<sup>1</sup>University of Waterloo, Canada

jghimire@ecemail.uwaterloo.ca

<sup>2</sup>Institut TELECOM SudParis, France

Firstname.Lastname@it-sudparis.eu

<sup>3</sup>Asian Institute of Technology, Thailand teerapat@ait.ac.th

### **Objectives**

- Modeling P2P network used as a service control overlay for session-based applications like IP telephony
  - Obtaining the quantitative formulations for the effect of P2P network parameters on the performance parameters
    - Session setup delay (SSD)
      - Post-dialing delay
    - System capacity
      - Number of customers for a given resource and vice versa

### P2P for lookup service

 A system with Super-nodes (SN) and client nodes (CN)

SN form a P2P overlay. CN use this overlay for

Lookup (who/where is alice)

 The actual voice communication is directly between bob and alice



### **Motivation**

In a SN based P2P look-up service overlay, determining:

- how the average session set-up delay (SSD) might vary with varying the number of SNs can be very useful
- how the capacity (in terms of lookup processing rate) of the overlay scales with an increase in number of SN might also be equally useful.

"The basic question of **HOW MANY SUPERNODES**"

### Contributions

- Queuing network based model for modeling the lookup process and the delay of Chord-based structured P2P routing.
  - Closed form expression for: lookup hops, lookup delay and "absorption probability"
  - Formulation of the relevant parameters in terms of so-called "absorption probability" allows the model to be extended to other P2P structures.
  - Closed-form expression for the capacity of the overlay as a function of the number of SN.
  - The expression for optimum number of SN for minimum SSDs
  - A trade-off relationship between capacity and delay

## **Analysis of Chord Routing**

- The chord [1] routing is well known but very complex to analyze.
- We idealize chord routing considering a deterministic placement of nodes and modeling the routing process as a tree

### **Model assumptions**

- Keyspace  $K = 2^k$
- Number of Nodes  $N=2^c$
- Each SN is assigned to serve  $2^{(k-c)}$  keys
- No consideration to Churn for simplifying the model.
  - Up time of a typical skype
     SN is about 2 hours [2]
     and lookup ends up in a
     matter of few seconds



### **Key Results**

- Lemma 1
  - For  $N \leq K$  the peer out degree is  $\boldsymbol{c}$ .
- Lookup routing path tree (LRPT): the probable routing path of a lookup messages originating at a given SN as a tree.
- Absorption: When a look-up message is received by a SN i, if the lookup is destined to it or its CN, then the lookup is no more forwarded and considered to be absorbed.
- Eb-NRSN (Effective bneighbor reachable SN): For
  a given SN i, an Eb-NRSN is
  a SN in the LRPT of SN i
  that, apart from absorption
  possibility, have (b-1)
  possible forwarding
  branches.

### **LRPT**

Lemma 2: The lookup message forwarded to i<sup>th</sup>
neighbor can either be terminated instantly or can
be forwarded to one of the first (i - 1) neighbors of
the ith neighbor.



### LRPT: Eb-NRSN

- Lemma 3: Each E*b*-NRSN is referred to it by its predecessor for  $(2^{b-c-1}K)$  keys
- The probability that an Eb-NRSN is eventually referred by the originator SN is given as

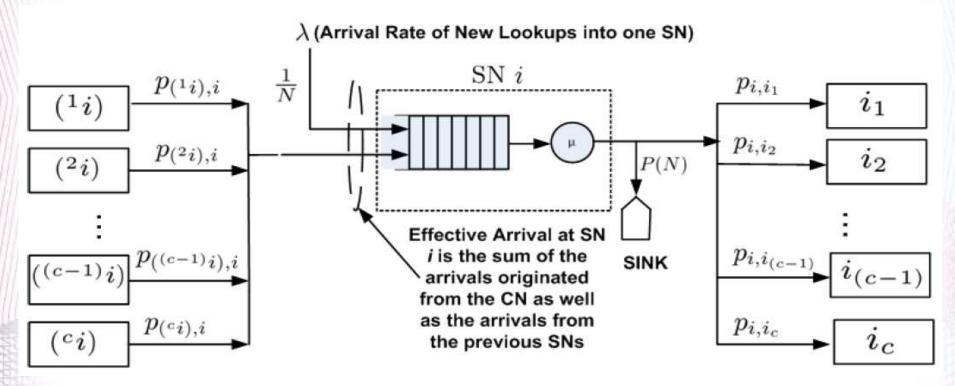
$$\pi_b = \frac{1}{2^{c - (b - 1)}}$$

• Number of Eb-NRSN  $(n_b) = 2^{(c-b)}$ Number of SNs for which a SN is Eb-NRSN= $2^{(c-b)}$ 

# Absorption probability and lookup hops

**Definition 1.** Absorption Probability (P(N)) of a SN is defined as the probability with which an incoming lookup is terminated at this SN. An incoming lookup message can be a new lookup request generated by the CN associated with the given SN; or it could have been forwarded to the SN by its predecessor(s).

**Lemma 4.** In the given Chord Overlay Model, the absorption probability (P(N)) is given as follows


$$P(N) = \frac{1}{(1 + \frac{c}{2})}$$
 for  $N = 2^c$  and  $N <= K$  (4)

**Lemma 5.** In the given Chord Overlay Model, the average number of SNs visited per lookup  $(\overline{S})$  is given as follows

$$\overline{S} = 1 + \frac{c}{2} \tag{11}$$

### **Queuing Network Model**

 Open Queuing Network (Markovian assumption for Product Form Formulation)



Node Model for an SN

### **Queuing Network Parameters**

 Notations following well-known parameters (e.g. [4])

| D                 | Denovination                                             |
|-------------------|----------------------------------------------------------|
| Parameter         | Description                                              |
| $\lambda_{total}$ | mean total arrival rate                                  |
| $\mu$             | SN service rate                                          |
| $(^k i)$          | the SN whose $k^{th}$ finger is SN $i$                   |
| $i_k$             | the $k^{th}$ finger of SN $i$                            |
| $p_{(k_i),i}$     | the routing probability from the SN $(ki)$ to SN $i$     |
| $p_{i,i_k}$       | the routing probability from SN $i$ to SN $i_k$          |
| $p_{0,i}$         | the probability of a lookup message to originate at SN i |
| $p_{i,0}$         | the absorption probability                               |
| $\lambda_i$       | Effective arrival rate in $SN_i$                         |
| $e_i$             | Visit ratio of $SN_i$                                    |
| $ ho_i$           | Utilization factor of $SN_i$                             |

### **Assumptions on Traffic Model**

- Total lookup message arrival process in the system is a Poisson process with  $\lambda_{total}$  mean arrival rate.
- All SNs gets exactly same rate of lookup message requests from their associated CNs
- The destination of a lookup is selected uniformly among all the participating CNs such that for any lookup, the probability of a SN being the destination SN is equiprobable.
- All SNs in the system have an exponentially distributed service time with mean  $\frac{1}{u}$
- All SNs have an infinite buffer for lookup message

# Traffic Parameters in terms of Absorption Probability

**Lemma 6.** The visit ratio  $(e_i)$ , effective arrival rate  $(\lambda_i)$  and the utilization  $(\rho_i)$  of a given SN i in the load-balanced chord overlay model is

$$e_i = \frac{1}{N \cdot P(N)}$$
  $\lambda_i = \frac{\lambda_{total}}{N \cdot P(N)}$   $\rho_i = \frac{\lambda_{total}}{\mu \cdot N \cdot P(N)}$  (14)

$$e_{i} = \frac{\lambda_{i}}{\lambda_{total}}, e_{i} = p_{0,i} + \sum_{j=1}^{N} p_{j,i} \cdot e_{j}, e_{i} = e_{j}$$

$$p_{i,0} = 1 - \sum_{j=1}^{N} p_{i,i_{j}}, p_{i,0} = P(N)$$

$$e_{i} = p_{0,i} + e_{i} \sum_{k=1}^{c} p_{(k_{i}),i}, p_{(k_{i}),i} = p_{i,i_{k}}$$

### **Delay and Capacity**

**Theorem 1.** The total mean lookup delay (session setup delay)  $(\overline{D})$  in the load-balanced chord overlay model is

$$\overline{D} = \frac{1}{\mu(1-\rho_i)} \left(1 + \frac{c}{2}\right) \tag{18}$$

Considering a Jackson formulation (PFQN), delay at a node is given as  $\overline{D_i} = \frac{1}{\mu(1-\rho_i)}$ 

**Theorem 2.** The capacity of the load-balanced chord overlay for IP telephony ( $\lambda_{max}$ ) can be expressed as follows:

$$\lambda_{\text{max}} = N \times P(N) \times \mu = \frac{N}{1 + \frac{c}{2}} \mu \tag{21}$$

Capacity is bounded by the maximum utilization of 1

### **Comparison with Simulation**

Simulation carried out in ns-2 (a DES)

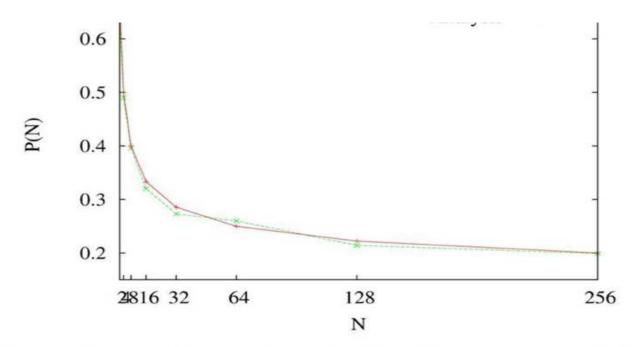



Fig. 5. Absorption Probability versus Different number of  $\mathrm{SN}(N)$  for Chord-topology overlay scheme with  $\mu=4$  call requests/sec and Call Rate Per node=1 call/2 Mins , n=700

## Result (2)



Fig. 4. Average SN visited per Lookup versus N for idealized version of Chord

## Result(3)



Fig. 7. average Lookup delay in overlay versus number of SN(N) for idealized chord scheme with  $\mu=4$  call requests/sec and Call Rate Per node=1 call/ Mins , n=700

## Result (4)



Fig. 8. Maximum lookup rate vs N

### **Discussion**

- Delay: an increase in the number of supernodes (more lookup resources) does not necessarily increase (or decrease)
  - At first, when the load is high, the delay decreases with an increase in N
  - After a certain point, the delay however starts to increase with an increase in the SN resources.
  - An optimum can be easily calculated. This guarantees minimum delay for the given traffic load condition

## Discussion(2)

- By adding more SN, the capacity of the network can be increased
  - (even if this happened for chord, this might not be the case, for example we have shown that in ring, a capacity limit is observed.)
- The formulation can be used to dimension such systems (or additionally adding more SN if capacity is exceeded)

## Discussion(3)

 After the point of minimum SSD, more SN increases SSD whereas increase system capacity. So, a trade-off relationship exists between the delay performance and the system capacity.

### **Future work**

- Use this model for other P2P networks
  - See our work [4]
- Enhance the model for non-balanced cases

### References

- [1] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable Peer-To-Peer lookup service for internet applications. In SIGCOMM 2001 Conference, Aug
- [2] Wookyun Kho, S.A. Baset, and H. Schulzrinne. Skype relay calls: Measurements
  and experiments. In INFOCOM Workshops 2008, IEEE, pages 1–6, April 2008.
- [3] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
   Queueing networks and markov chains: Modeling and performance evaluation
   with computer science applications. pages 461–467, New York, 2006. John Wiley
   & Sons.
- [4] Jagadish Ghimire, Mehdi Mani, Noel Crespi, Teerapat Sanguankotchakorn.
   Delay and capacity analysis of structured peer-to-peer networks for IP telephony,
   2009 ISSN: 0183-0570, Ref: RR 09 012 RS2M

