
A Distributed Service Manager for Seamless Service
Continuity

Vincent Verdot* **, Noël Crespi** and Yann Gasté*
* Alcatel-Lucent Research and Innovation, Nozay, France

** Institut National des Télécommunications (GET-INT), Wireless Networks and Multimedia Services, Evry, France
{vincent.verdot, yann.gaste}@alcatel-lucent.fr; noel.crespi@int-evry.fr

Abstract—The IT domain has considerably evolved, users are
now surrounded with cheaper and more powerful terminals than
ever. Mobile and fixed devices connected to high-speed network
technologies can bring out for the owners almost any services.
But if the technology advances allow the user to enjoy his services
more freely and conveniently, are the mobility mechanisms ready
to offer a real seamless experience? In this article, we answer this
question by analyzing the service management issues and the
strength and defaults of existing solutions. From these analysis,
we propose a new distributed system that assures the continuity
of services by controlling the applications and their resources
over the user’s devices. This solution brings out new user
experiences by considering his devices as a single and coherent
system providing services regardless of the device actually hosting
them.

Keywords: service continuity; session mobility; terminal
handover; resource management.

I. INTRODUCTION
When a user is consuming a service such as writing a

document, communicating with a friend or watching a movie,
he would like the service to be available regardless of the
mobility constraints and profit from the environment
characteristics.

The challenge is to keep a service alive when the user is
moving, changing access technology or switching device while
adapting to its environment: different terminal capabilities,
peripherals or network properties.

A. Information Technology Sphere has Changed
Small computer devices (such as PDA, smart phones or

cellulars) are now highly-capable in terms of computing and
memory power. On the other hand, wireless data access
networks are also more efficient, providing greater bandwidth
and a wider coverage.

Thus, mobile devices capabilities tend to be equivalent to
fixed ones, able to offer almost the same services, possibly at a
lower quality. Actually, the user now owns a set of fixed and
mobile devices, providing equivalent features with different
properties (access technology, display characteristics, specific
peripherals, etc), so he uses a device according to the properties
he wants to be applied to his service.

Moreover, nowadays the user terminal devices, ranging from
mobile phones to desktop computers, are cheaper and now
more powerful at a same price as their previous models. Thus
the customers tend to own multiple devices, each with different

characteristics like mobile, wide-screen or high-capacity
storage.

B. A New Mobility Challenge: Service Continuity
This new context in the Information Technology sphere

offers more freedom to the user who is no more limited to a set
of services an a certain device. But this user-centric schema
would reveal its full potential if the mobility aspects would be
efficiently handled. For the best user experience, the mobility
mechanisms must be transparent, and so guarantee seamless
service continuity.

The concept of “service continuity” is an improvement of
“service mobility”. The service mobility is assured when a user
can access his services from any device, while in service
continuity he can also access to the service context (i.e. the set
of information used by the application providing the service).
In other words, in the former the user can use the same service
from any device while in the latter he continues using his
service, without interruption, from any terminal (i.e. he does
not need to call back his correspondent, reopen the file he was
editing… or realize any service initialization action).

Many works are focused on the mobility management at the
lowest layers (e.g. horizontal and vertical handover), and the
existing solutions are interesting but can not be applied to
higher layers concerns. Because it is always necessary to keep
the service context while moving in order to achieve the service
continuity and only high-layer mechanisms are able to
guarantee such mobility, especially when a service is
transferred from a device to another (terminal handover).

The goal of this paper is to propose a novel and efficient
model of service mobility management within a user’s device
set. The remainder of this article is organized as follows:
Section II defines important keywords, presents service
continuity issues and finally exposes the ongoing research
works and the requirements for an efficient solution. In Section
III we introduce our proposed model, describe its principle and
the main mechanisms, then we present a use case and discuss
the advantages and drawbacks of our solution and the potential
improvements. Finally, in Section IV we summarize the lesson
learned and conclude by referring to our work perspectives.

II. STATE OF THE ART

A. Services and Applications
In this paper, we often use the terms of “service” (a

functionality) and “application” (its implementation). This is
how they must be understood in this article.

Figure 1. Service transfer mechanism between two devices.

A service is a functionality provided to a user. It can be for
communication purpose (Voice over IP, Instant Messaging),
edition (text editor, document reader), multimedia (video
streaming, music)… any function provided by a device. We
could classify the services into two categories: the connected
services that imply several peers (client and/or servers) and
require a network connection; and the local services that only
require the local device. These two service categories impose
different constraints, the former is usually more time-sensitive,
requires synchronization and has a light context while the latter
generally uses important resources in terms of computing and
memory capacity.

An application is a program that realizes a service on a
device. It can be considered as one instance of the service
because different applications can provide the same service, as
long as they provide the same basic functionality (e.g. sending
and receiving messages with an IM service). As an application
is a service instance, it consumes resources on the device
executing it; these resources can be files, volatile memory
information, input/output streams… and represent the raw
material of the service.

B. Overview of Service Continuity Issues
Mobility management is a wide research area, which impacts

every network layers. We are focused on the highest one
because it is where we can most precisely control the service
behavior and appreciate the user experience.

Nevertheless, the service mobility can not be only managed
by high layer mechanisms, thus it must also be supported by
lower layers better adapted for some mobility issues such as for
horizontal or vertical handovers (change of access network or
technology), many research efforts deal with these concerns, cf.
[1][2][3]. In this article, we suppose that mobility mechanisms
regarding the lower layers are correctly handled and transparent
for the application. Then we have chosen to stay focused on the
service continuity concept which is the main issue during a
terminal handover.

The principle of service continuity is to provide a service
without interruption in a mobile environment. One of the main
challenges is being able to support a handover between two
different terminals. Existing solutions are mainly based on
synchronization between two terminals using the same
application. With a standardized protocol that owns its specific
transfer messages, it is rather easy to carry out a handover
between two applications. But what about services not based on
standardized protocols, which do not have their own integrated
transfer mechanisms? A text-editor service for example can be
provided by many applications, so transferring such a service
from a device to another means transferring its context from an
application to another by probably adapting it (c.f. Fig. 1).

When a transfer occurs between two terminals, the delay
between the service switch request and the availability of this
service on the new device is critical as it must be short enough
to be acceptable for the user. This delay will be called “service
transfer delay” in the remaining of the article.

The notion of “acceptable” is subjective as it depends on the
user himself and the type of service. A real-time application for
example, typically the communication services, requires the
shortest delays to be satisfactory while a user would accept a
couple of seconds for a text editor transfer. The notion of
“seamless” service transfer is also subjective and similar to the
definition of “acceptable”, therefore we will consider a service
transfer to be seamless if the delay is acceptable and no action
is required from the user.

C. Toward a Service Continuity Solution
Research works on service continuity are rather scarce but

some studies and existing solutions are really interesting as
they bring useful concepts and mechanisms.

1) Display forwarding
A really basic solution is the principle of display forwarding

(e.g. X-forwarding, Virtual Network Computing). The
application is hosted by a device that realizes all the computing
and plays the role of server, then any authorized terminal can
remotely access to the application by connecting to this server.
The server sends application outputs to the client terminal
which sends the user’s inputs to the hosting device. Thus, the
user can switch of device; he will still be able to use the same
application without interruption as long as he can stay
connected to the server.

This service continuity mechanism has interesting properties:
• The handover delay between two devices is very short

as only the display need to be transferred from the
server.

• The handover is synchronized as the application does
not stop.

• The mechanisms are independent of the service type
and the device capabilities.

Nevertheless, this solution is not satisfactory for the
following reasons. It requires the user to be always connected
to the hosting device, so the service is no more operational if a
network failure occurs or if the server is shutdown. Moreover,
as the application is not transferred on the new device, it can
not benefit of its new capabilities. Finally, there is no
management of the user devices, so he needs to know where
each application is hosted before to be able to switch the right
service.

2) Session mobility
 Another solution which consists of a subset of the service

continuity issue is the session mobility concept. Session
mobility has been widely studied in multimedia and
communication services and several mechanisms are
standardized.

The Session Initiation Protocol [4] standardized by the
Internet Engineering Task Force is a reference signaling
protocol that creates and manages multimedia sessions. This
protocol has been adopted by the 3GPP1 in the UMTS2 with the

1 3rd Generation Partnership Project.
2 Universal Mobile Telecommunications System.

Figure 2. A Personal Service Environment composed of three

DSM-enabled devices.

IP Multimedia Subsystem [5], next generation core network
and service architecture for telecommunication operators.

Several SIP extensions have been added to improve its
functionalities. The new SIP method “Refer” [6] and the header
“Replaces” [7] were introduced to manage the mobility of
multimedia communications between terminals. Identified as a
“session”, a communication initiated with SIP is switched from
a device to another on user request. As this service continuity
solution is integrated into the signaling protocol, the
corresponding standardized mechanisms are obviously more
efficient; synchronization, interoperability and authentication
issues are naturally handled. Certain research works have
proposed advanced session mobility solutions based on SIP cf.
[8][9]. Other protocols such as Real Time Streaming Protocol
[10] or RTP [11] can also be used to assure a session mobility.

Nevertheless, the session mobility mechanisms can not be
applied to any services because it is necessary for the signaling
protocol to identify the “sessions” corresponding to the service.
However, some services can not be identified as “sessions” or
are independent of the signaling protocol providing the
mobility mechanism, such as a text editor application.
Moreover, as in the previous solution, the user needs to find
which terminal is hosting the communication session he wants
to switch. Finally, with this solution the user does not control
the services, he just can move the sessions but the applications
need to be ready to accept an incoming session to achieve a
switch.

D. Requirements for a Service Continuity Management
Currently, there is no solution for service continuity

management over a user’s terminal set. Such a model should
control the user’s devices to provide seamless and transparent
service management architecture. According to the analysis of
the mechanisms and concepts studied in the previous section,
we can emphasize the properties required for such a model.

• Transparent: the service management should be
transparent to other applications, so the mechanisms
need to consume low computing and memory
resources.

• Efficient: the transfer delays should be optimized to
appear seamless regarding to the service type.

• Service independent: any service type should be
supported.

• Terminal independent: the services should be adapted
to the device’s capabilities.

• Self-configured: the devices and the services should be
automatically managed (identification, location).

• Secured: user’s services should be protected with
authentication mechanisms, moreover the system
should support transfer or device failures.

III. A NEW MOBILITY MANAGEMENT MODEL
As the existing mechanisms do not bring a satisfying

solution, we try to define a new mobility management model
that guarantees the service continuity with the previously
defined constraints.

A. Principle
The main principle of our service management model is to

control the applications and their resources provided by the
user’s devices to eventually transfer the corresponding services
from a device to another.

This new model assures the continuity of the user’s services
over a set of his devices. This set is dynamic as it can consist in
mobile terminals, devices turned-on/off… however the
mobility mechanisms must remain operational. Therefore, the
most appropriate architecture for this purpose is a distributed
system as it supports any device addition or suppression while
preserving its functionalities.

Thus, our solution consists in a distributed application
integrated in each device operating system to be managed. This
application, the Distributed Service Manager (DSM),
establishes a secured network overlay with all user’s devices to
be managed. This network overlay is called Personal Service
Environment (or PSE) and it is the base of our model.

A user’s Personal Service Environment is a concept that
represents the group of devices controlled by a Distributed
Service Manager (c.f. Fig. 2). All devices belonging to a PSE
are necessarily networked, DSM-enabled (with integrated DSM
functions), and authorized by the user. A PSE consists of one or
more devices, but a device always belongs to only one user’s
PSE.

 Therefore, a PSE is a network overlay managed by the DSM
which controls the services hosted by the corresponding
devices. Thus, the DSM provides the user the necessary
mechanisms to control his services from any device. He can
transparently transfer the service from a terminal to another,
regardless of the applications or the device delivering the
service.

B. Detailled View
The Distributed Service Manager is integrated into the

operating system of each device to be managed. The DSM
needs to be tightly linked to the operating system functions as it

must control the applications and all the corresponding
resources (files, network socket, data streams, etc). Then each
device cooperates to manage the Personal Service Environment
by performing the following tasks:

• manage the PSE nodes,
• control the applications,
• manage the user’s services.

1) The nodes
The first role of a DSM is to manage the PSE by merging

other PSE (from the same user) composed of one or more
devices. When new devices are encountered, they are identified
and authenticated to be merged to a single PSE (each DSM-
enabled device is previously configured by the user). Fig. 3
illustrates an example of PSE management. In the schema a)
three distinct PSE are present, the fourth device is not DSM-
enabled so it can not belong to a PSE. In the schema b) the
laptop has activated his Ethernet and WiFi network interfaces,
thus it can connect to the two other PSE and then the DSM
merges them into a single one.

PSE terminals can be located in different networks,
especially when a device owns several network interfaces (e.g.
Ethernet and WiFi), in such a case, the DSM must route
received requests from an interface to another if necessary. An
unresponsive device (turned-off, disconnected from the
network, etc) is automatically detected by the DSM and
removed from the PSE. Each PSE device has a list of other
peers, updated on any change. The routing mechanisms are not
detailed in this paper, but could consist in any peer-to-peer
routing algorithm.

2) The applications
The main role of the DSM is to manage the user’s services,

for this purpose it needs to control the corresponding

applications and their resources.
The applications can be started, stopped, paused or resumed

by the DSM on any device, this is achieved by the DSM
functions integrated in each device operating-system. Start and
stop actions are the basic launch and kill but the pause and the
resume ones are specific functions that must be supported by
the application. If an application does not support the resume
and pause functions, the provided services will be ignored by
the DSM and all the corresponding mobility mechanisms, these
applications are non-DSM compliant.

The pause action must be handled by the application on
DSM request, it consists in making the application to stop its
process and to provide a snapshot of its resources.

When a service is provided to a user, an application (or
several) is processing data to offer the required functionality.
For example with a text-editor service, a text editor application
such as vi processes many resources: the current edited files,
the cursor position, the command history, etc. Each resource is
constantly evolving during the application process; a snapshot
is a frozen value of these resources, at the last stable state. The
notion of “stable state” means that the resource values are
coherent, e.g. in our case, the “command history” resource can
not have the last command if it is still not applied to other
resources. Finally, the application associates each resource
listed in the snapshot with an identifier, preferably human-
readable which should be standardized for well-known service
types to assure an efficient interoperability between
applications. The resource snapshot can only be provided by
the application as a stable state is dependent on the service
semantic. Thus, on pause request, the application stops its
process and sends back a snapshot to the DSM.

The resume function must be handled by the application on
DSM request with a snapshot as argument. It consists in
starting the application with a predefined state of its resources,
those provided in the snapshot. As the same service may be
processed by different applications, a resuming application is
free to discard unhandled resources listed in the snapshot. This
way, the service can be adapted to different applications.

3) The services
All DSM-compliant services launched within a PSE are

logged, and uniquely identified. Thus, the user is able to get,
from any device belonging to the PSE, the list of services
currently running and their properties (identifier, type,
description, requirements, etc). He can also issue orders to
manage these services over the PSE: start, stop or transfer. If
the first two actions are basically realized by launching or
killing the corresponding application, the third one is the most
interesting as it allows realizing the service continuity. When a
transfer order is issued by the user, the DSM requests the
corresponding application to pause. Then a snapshot is
generated and provided to the appropriate application of the
new device, in resume mode. The application to be launched in
the destination terminal is defined by the service type
(previously logged).

4) Resources management
As described previously, during a service transfer the

application resources are transferred from a device to another
within a snapshot.

These resources can be really simple such as a font size, a
cursor position (e.g. with a text-editor) but they could also be

Figure 3. Management of Personal Service Environment devices.

Figure 4. Resource management mechanism.

more important in terms of memory usage: a text document, a
video clip... or even un-transferable like a socket or a stream.

The size of all application resources can be huge and the
transfer time of the corresponding snapshot will grow
significantly. Thus the service transfer delay will certainly
become intolerable for the user, non-appropriate to the service
type and then the seamless mobility management can not be
achieved.

We introduced in our model a specific mechanism to manage
the application resources. Of course, some resources are
mandatory for a given service; e.g. in text-edition the edited file
is mandatory, so the user must wait as long as necessary to
continue editing his document. But what about the last color
used, the font face or the clipboard content? They may not be
necessary, in particular if the new application does not support
those options. So, it seems logical that it is up to the application
(the destination one) to decide which resource is needed and
must be transferred. Thus the mandatory resources take
precedence over the optional and unsupported ones, and are
transferred faster to minimize the service transfer delay.

As described before, the snapshot consists of a list of
resources, each associated to an identifier. The resource
management mechanism is based on this identifier, also called
“resource anchor” which uniquely identify the resource in the
device. When the application generates the snapshot, the DSM
stores the resource values in the local device and keeps only the
anchors in the snapshot. Then, when the new application
receives the snapshot, it requests the needed resources to the
DSM thanks to their identifier. Fig. 4 presents an example of
resource management mechanism during a service transfer. In
the schema a) the application A is paused, then it provides a list
of its resources in the latest stable state associated to anchors
and stops. Note that the application shutdown can be delayed to
continue providing a service during the transfer delay
(especially for time sensitive services). The Distributed Service
Manager resumes the new application B with a simplified

snapshot that only carries the list of anchors and stores the
corresponding resources locally. Then, in the schema b) the
application B requests from the DSM the resources it needs
according to its functionalities and priorities. Finally, the data
corresponding to the resource anchor is provided to the
application.

The resource anchors are an efficient way to minimize the
transfer delays and the snapshot size but it is also a solution to
provide un-transferable resources for the destination device.
Those resources are typically data stream or network sockets
(input or output data stream). They share the property to
continuously send or receive data; transferring these resources
from a device to another is obviously impossible because
depending on the operating system, but not the corresponding
anchors.

For example, with a communication service, a device is
continuously receiving media packets on a network socket. To
transfer the service and the corresponding resources, the VoIP
application adds to the snapshot the socket identifier (which is
dependent on the operating system) and associates it to the
anchor “incoming voice”. When the new application will be
resumed with the snapshot, it will request to the Distributed
Service Manager the resource associated to this anchor, then
the DSM will provide the data by connecting to the first device
that will realize a network tunneling between the correspondent
node and the new terminal. Of course, this mechanism imposes
a strong constraint as the intermediate nodes needs to remain
connected to assure the tunneling, nevertheless it is applicable
to any service and resource.

An interesting feature made available through the resource
anchors is the resource transitivity. When an application
receives a snapshot with unsupported anchors, it simply ignores
them, and the user will only use his service with fewer options.
Then, if he switches again his service to a third device, he will
send all the resource anchors even those he previously received,
and if the new application supports them the service will be
continued with more options. Thus, the service can be adapted
to the device capabilities in lower and higher quality.

C. Example
Bob owns two devices (all DSM-enabled): a WiFi PDA and

a personal computer (Ethernet connected to a WiFi access
point) at home. He is in the bus and wants to write a letter to
print it once arrived at home. So he launches a text-editor on his
PDA, actually he starts a text-editor service on a PSE
consisting in only one device: the PDA (his PC is turned-on but
not connected to the PDA, so it belongs to another Bob’s PSE).
He edits his document and finally arrives at home. Bob’s PDA
connects to his WiFi access points and then both DSM (PDA
and PC ones), detect each other, and merge into one DSM
managing one PSE compound of two devices.

Bob enters his house and chooses to finish writing the letter
on his PC that offers a wider screen and keyboard. So he
switches the text-editor service to the PC by selecting it in a
specific GUI listing the services currently running in the PSE.
His preferred PC text-editor application (e.g. Open Office)
assigned to the text-edition service type is automatically
launched (resume) and the PDA application is stopped (pause).
The service context, i.e. the application resources, is transferred
from the PDA to the PC, and Bob can finish writing his letter,
with all supported parameters configured as in the previous

application: file opened, cursor position, command history, etc.
So he cancels the last operation (a misspelled word), inserts an
image, changes the fonts and prints the document.

Thus, Bob launched his service only once in a PSE, then the
devices become interfaces to the service (through an
application), providing a different experience according to the
terminals properties. His service was adapted to fit the new
device capabilities (advanced software and hardware) because
Bob chooses to benefit from the convenient characteristics of
his PC but if he needs to use the mobility aspect of his PDA, he
can switch his service to the PDA and the service will be
adapted with fewer options but with the Bob’s required mobile
attribute.

The same example could be presented with any services:
multimedia, communication, gaming, as long as the service
context can be defined, i.e. the corresponding snapshot and its
properties.

D. Discussion and improvements
The main strength of our model is to consider the user’s set

of devices as a single system providing his services, the
Personal Service Environment, regardless of the device actually
hosting it.

Our model successfully fits to the constraints listed in
Section II.D. The Distributed Service Manager brings a low
computing mechanism by distributing the functions over the
PSE devices, it also assures a secure architecture that does not
rely on a single device, finally it manages the PSE, the routing
and the services automatically. The resource management
mechanism is also a real strength of our solution, it makes
possible the realization of optimized transfers that support any
service types (any resources), and any devices (service
adaptability). However, several points of our model could be
more deeply studied to be certainly improved.

The standardization aspect of the snapshots and their
resource anchors (c.f. Section 4) is really important as it would
enable the interoperability between all applications providing a
same service. Moreover, several properties could be associated
to the snapshots to make the service adaptation mechanisms
even more efficient: mandatory resources (for service delivery),
resource groups (resources that can not be used if not all
supported), service types, resource type and size, etc.

The resource management mechanism offers a way for
remote devices to access to un-transferable data; nevertheless it
is necessary to remain connected to the intermediate devices
which assure a tunneling of the incoming data. This issue
should be studied in future research works.

Other important mechanisms out of the scope of this article
should be detailed such as the overlay network routing, the
authentication features or the integration of the DSM functions
into operating systems and applications.

IV. CONCLUSION
In this article we focused on the service management issues

and more precisely the service continuity aspects for which

existing solutions are not suitable if we consider heterogeneous
devices and services.

We proposed a new model offering the user a seamless and
convenient service continuity management to improve his
experience by enabling a more natural usage of his services.
We presented a distributed system that manages the user’s
services over all his devices, with continuity mechanisms
adapted to the terminal capabilities. We also introduced an
optimized resource management mechanism that makes the
service transfers more efficient and suitable for any type of
service.

In the next step of our research work, we will try to
implement the Distributed Service Manager to evaluate its
performances in managing the Personal Service Environment
and the application resources, but also to measure the transfer
delays, and the service adaptation capabilities of the system.
This implementation will prove the feasibility of our model and
the impact on the service and the user’s experience.

We will also focus more precisely on the communication
services as they imply challenging constraints: real-time data
processing, multiple input and output streams, network
dependant... A DSM prototype would allow precise
measurement of the performances of such time-sensitive
services and the potential network issues (distributed routing,
bandwidth bottleneck, etc).

Finally, we will study how to represent such a distributed
environment composed of multiple devices and services, how
to conceive an intuitive and convenient interface between the
user and his Personal Service Environments.

REFERENCES
[1] H. H. Choi and D. H. Cho, “Takeover: a new vertical handover concept

for next-generation heterogeneous networks,” Vehicular Technology
Conference, IEEE, 2005.

[2] J. McNair, Z. Fang, "Vertical handoffs in fourth-generation
multinetwork environments," Wireless Communications, IEEE, 2004.

[3] M. Li, Y. Fei, V.C.M. Leung, T. Randhawa, "A new method to support
UMTS/WLAN vertical handover using SCTP," Wireless
Communications, IEEE, 2004.

[4] J. Rosenberg et al, “SIP: Session Initiation Protocol,” RFC 3261,
Internet Engineering Task Force, June 2002.

[5] 3rd Generation Partnership Project, “IP Multimedia Subsystem (IMS)”,
TS 23.228.

[6] R. Sparks, “The Session Initiation Protocol (SIP) Refer Method,” RFC
3515, Internet Engineering Task Force, April 2003.

[7] R. Mahy, B. Biggs and R. Dean, “The Session Initiation Protocol (SIP)
"Replaces" Header,” RFC 3891, Internet Engineering Task Force,
September 2004.

[8] H. Schulzrinne, E. Wedlund, "Application-layer mobility using SIP,"
Service Portability and Virtual Customer Environments, IEEE, 2000.

[9] R. Shacham, H. Schulzrinne, S. Thakolsri, W. Kellerer, "The virtual
device: expanding wireless communication services through service
discovery and session mobility," Wireless And Mobile Computing,
Networking And Communications, IEEE, 2005.

[10] H. Schulzrinne, A. Rao and R. Lanphier, “Real Time Streaming Protocol
(RTSP),” RFC 2326, Internet Engineering Task Force, April 1998.

[11] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, Internet
Engineering Task Force, July 2003.

